Robot Academy Robot Academy
Sign In
Learn Resources Donate About Sign In

Search Results for: noise

Rank Filtering

lesson

So far we have taken a linear combination of pixels in the box around the input pixel, but non-linear operations like sorting and ranking the pixel values also prove to be very useful. We look at the median filter which is much better at removing salt and pepper noise from image than simple smoothing.

Kernels

lesson

Using the properties of convolution we can combine a simple derivative kernel with Gaussian smoothing to create a derivative of Gaussian (DoG) kernel which is very useful for edge detection, or a Laplacian of Gaussian (LoG) kernel which is useful for detecting regions.

Summary of Spatial Operators

lesson

Let’s recap the important points about spatial operators. Linear operators can be used to smooth images and determine gradients. Template matching can be used to find a face in a crowd. Non-linear operators such as rank filters can be used for noise removal, and mathematical morphology treats shapes according to their compatibility with a structuring […]

Mathematical Morphology

lesson

Another non-linear operation on the pixels in the box around the input pixel is to test whether they match a reference shape. This is a very powerful and useful approach to cleaning up noisy binary images known as mathematical morphology and objects in the image are treated according to their compatibility with a structuring element. […]

Proudly supported by:

  • Queensland University of Technology
  • Australian Centre for Robotic Vision
  • IEEE Robotics and Automation Society
Join our Facebook group About Resources Donate Copyright Terms of use

© QUT Robot Academy