#### Velocity of 6-Joint Robot Arm – Rotation

lesson

We resume our analysis of the 6-link robot Jacobian and focus on the rotational velocity part.

lesson

We resume our analysis of the 6-link robot Jacobian and focus on the rotational velocity part.

lesson

For a real 6-link robot our previous approach to computing the Jacobian becomes unwieldy so we will instead compute a numerical approximation to the forward kinematic function.

lesson

We extend what we have learnt to a 3-link planar robot where we can also consider the rotational velocity of the end-effector.

lesson

For a simple 2-link planar robot we introduce and derive its Jacobian matrix, and also introduce the concept of spatial velocity.

lesson

We consider a robot with three joints that moves its end-effector on a plane.

lesson

We consider a robot, which has two rotary joints and an arm.

lesson

We consider the simplest possible robot, which has one rotary joint and an arm.

lesson

We will learn about how we make the the robot joints move to the angles or positions that are required in order to achieve the desired end-effector motion. This is the job of the robot’s joint controller and in this lecture we will learn how this works. This journey will take us in to the […]

lesson

A robot manipulator may have any number of joints. We look at how the shape of the Jacobian matrix changes depending on the number of joints of the robot.

lesson

To move a robot smoothly from one pose to another we need smooth and coordinated motion of all the joints. The simplest approach is called joint interpolated motion but it has some limitations.