Gravity and Payload
lesson
We examine the gravity term and explore the effect of changing robot payload.
lesson
We examine the gravity term and explore the effect of changing robot payload.
lesson
We can factorise the joint torque expression into an elegant matrix equation with terms that describe the effects of inertia, Coriolis and centripetal and gravity effects.
lesson
We start by considering the effect of gravity acting on a robot arm, and how the torque exerted will disturb the position of the robot controller leading to a steady state error. Then we discuss a number of strategies to reduce this error.
lesson
We will learn about the forces that are exerted on a robot’s joint by gravity acting on links, friction, and the coupling forces where the motion of one joint imparts a force on other joints.
lesson
A number of strategies exist to reduce the effect of these coupling torques between the joints, from introducing a gearbox between the motor and the joint, to advanced feedforward strategies.
lesson
We recap the important points from this masterclass.
lesson
In a serial-link manipulator arm each joint has to support all the links between itself and the end of the robot. We introduce the recursive Newton-Euler algorithm which allows us to compute the joint torques given the robot joint positions, velocities and accelerations and the link inertial parameters.
lesson
We learn how to use information from three accelerometers to determine orientation.
lesson
We learn the principles behind accelerometers, sensors that measure acceleration due to motion and due to the Earth’s gravitational field.
lesson
We will introduce resolved-rate motion control which is a classical Jacobian-based scheme for moving the end-effector at a specified velocity without having to compute inverse kinematics.